((4) in (1) in (2))
Why is this useful?
model1
?model2
?Analysis of Variance Table
Response: Weight
Df Sum Sq Mean Sq F value Pr(>F)
Length 1 6118739 6118739 627 <2e-16 ***
Residuals 54 527355 9766
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Analysis of Variance Table
Response: Weight
Df Sum Sq Mean Sq F value Pr(>F)
Length 1 6118739 6118739 2608.3 < 2e-16 ***
Width 1 110593 110593 47.1 8.1e-09 ***
I(Width^2) 1 294775 294775 125.7 1.7e-15 ***
Residuals 52 121987 2346
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Analysis of Variance Table
Response: Weight
Df Sum Sq Mean Sq F value Pr(>F)
Length 1 6118739 6118739 2608.3 < 2e-16 ***
Width 1 110593 110593 47.1 8.1e-09 ***
I(Width^2) 1 294775 294775 125.7 1.7e-15 ***
Residuals 52 121987 2346
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
An easier way
Analysis of Variance Table
Model 1: Weight ~ Length
Model 2: Weight ~ Length + Width + I(Width^2)
Res.Df RSS Df Sum of Sq F Pr(>F)
1 54 527355
2 52 121987 2 405368 86.4 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1